In this paper the problem of detection and correction of errors in the Banca d’Italia Survey on Household Income and Wealth is considered. A novel error correction procedure is proposed. It is based on non parametric Bayesian networks that are graphical models expressing dependence structure via bivariate copulas associated to the edges of the graph. The network structure and the misreport probability are estimated using a validation sample. The correction procedure is applied to bond amounts.

NON PARAMETRIC BAYESIAN NETWORKS FOR MEASUREMENT ERROR DETECTION / Marella, Daniela; Vicard, Paola; Vitale, Vincenzina. - (2017). (Intervento presentato al convegno SIS 2018 tenutosi a Palermo).

NON PARAMETRIC BAYESIAN NETWORKS FOR MEASUREMENT ERROR DETECTION

Marella Daniela;Vicard Paola;Vitale Vincenzina
2017

Abstract

In this paper the problem of detection and correction of errors in the Banca d’Italia Survey on Household Income and Wealth is considered. A novel error correction procedure is proposed. It is based on non parametric Bayesian networks that are graphical models expressing dependence structure via bivariate copulas associated to the edges of the graph. The network structure and the misreport probability are estimated using a validation sample. The correction procedure is applied to bond amounts.
2017
SIS 2018
Bayesian network; imputation; normal copula; validation sample
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
NON PARAMETRIC BAYESIAN NETWORKS FOR MEASUREMENT ERROR DETECTION / Marella, Daniela; Vicard, Paola; Vitale, Vincenzina. - (2017). (Intervento presentato al convegno SIS 2018 tenutosi a Palermo).
File allegati a questo prodotto
File Dimensione Formato  
MVV_cladag2017_comb.pdf

solo gestori archivio

Dimensione 369 kB
Formato Adobe PDF
369 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1411403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact